
Regression with multiple dependent variables? - Cross Validated
Nov 14, 2010 · Is it possible to have a (multiple) regression equation with two or more dependent variables? Sure, you could run two separate regression equations, one for each DV, but that …
regression - Converting standardized betas back to original …
I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.
regression - What's the difference between multiple R and R …
Nov 3, 2017 · In linear regression, we often get multiple R and R squared. What are the differences between them?
regression - How to calculate the slope of a line of best fit that ...
Dec 17, 2024 · This kind of regression seems to be much more difficult. I've read several sources, but the calculus for general quantile regression is going over my head. My question is this: …
regression - What does it mean to regress a variable against …
Dec 21, 2016 · Those words connote causality, but regression can work the other way round too (use Y to predict X). The independent/dependent variable language merely specifies how one …
How should outliers be dealt with in linear regression analysis ...
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?
regression - When is R squared negative? - Cross Validated
With linear regression with no constraints, R2 R 2 must be positive (or zero) and equals the square of the correlation coefficient, r r. A negative R2 R 2 is only possible with linear …
regression - Difference between forecast and prediction ... - Cross ...
I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems …
When conducting multiple regression, when should you center …
Jun 5, 2012 · In some literature, I have read that a regression with multiple explanatory variables, if in different units, needed to be standardized. (Standardizing consists in subtracting the mean …
regression - Trying to understand the fitted vs residual plot?
Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …